

Ausgewählte Aspekte der umwelttoxikologischen Forschung

Prof. Dr. Elke Dopp Universität Duisburg-Essen, IWW Zentrum Wasser

Was ist Toxikologie?

- Def. Toxikologie: Lehre von den schädlichen Wirkungen chemischer Substanzen auf lebende Organismen.
 - abgleitet von gr. toxikon = Pfeilgift.
 - > seit dem 17. Jahrhundert als Wissenschaftsdisziplin etabliert, obwohl das Wissen um Gifte älter ist.
- Im Unterschied zum Toxikon ist ein Toxin eine (wasser-) lösliche, von Organismen produzierte Substanz, also ein biogenes "Gift". Toxine werden im Rahmen der

Toxinologie, einem Teilgebiet der Toxikologie, untersucht.

(Gagnacci: Selbstmord der Kleopatra)

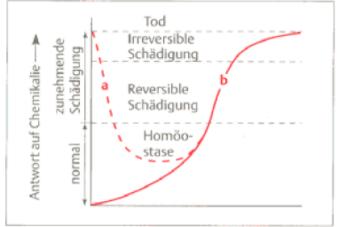
- Theoretische und praktische Grundlagen der Toxikologie stammen aus der Pharmakologie (= Lehre von den Wechselwirkungen von chemischen Substanzen und lebenden Organismen).
- Zwischen beiden Disziplinen bestehen fließende Übergänge; vgl. Theophrastus Bombastus von Hohenheim (1493-1541), genannt Paracelsus:

Lehrsatz aus den 7 Defensiones (1537/38):

"Wenn ihr jedes Gift richtig erklären wollet,
was ist dann kein Gift ?

Alle Ding sind Gift und nichts ist ohn' Gift,
nur die Dosis macht, dass ein Ding kein Gift ist"

- Bedeutung des Paracelsus-Lehrsatzes für nichtessentielle Stoffe:
 - ➤ keine Wirkung unterhalb einer Schwellendosis


mit der Dosis nehmen negative Wirkungen bis zum

Maximaleffekt zu

a: essentieller Stoff

b: nicht-essentieller Stoff

(aus: Fent, 1998)

- Bedeutung für essentielle Stoffe:
 - ➤ sowohl Unterversorgung wie Überdosierung führen zu negativen Wirkungen (Bspl.: Cu, Mn, Se, Co, H₂O, NaCJ)

- Wegen Dosisabhängigkeit der Wirkungen ist die Bezeichnung "Gift" problematisch. Alternativen:
 - Toxikon oder Schadstoff (z.B. Kohlenmonoxid)
 - Umweltchemikalie (z.B. Dioxine, Formaldehyd)
 - Fremdstoff oder Xenobiotikum (gr. xenos = fremd; bios = Leben) (z.B. Dioxine, Vinylchlorid)
- In Pharmakologie und Toxikologie werden zwei Hauptdisziplinen unterschieden:
 - Dynamik: was macht die Substanz mit dem Organismus?
 - Kinetik: was macht der Organismus mit der Substanz?

- Arzneimitteltoxikologie: "Nebenwirkungen" von Arzneimitteln.
- Gewerbe- oder Arbeitstoxikologie: akute und chronische Intoxikationen bei Arbeitsprozessen.
- Umwelttoxikologie: Umweltschadstoffe und menschliche Gesundheit (nicht identisch mit Ökotoxikologie!).
- Lebensmitteltoxikologie: Schadwirkungen von Nahrungsmitteln, spezifischer Inhaltsstoffe und Verpackungen.
- Wehrtoxikologie: Einsatz und Abwehr chemischer Kampfstoffe.
- Klinische Toxikologie: Therapie akzidenteller und absichtlicher Vergiftungen.
- Forensische Toxikologie: Aufklärung von Vergiftungsverdachtsfällen.

- Toxikodynamik charakterisiert die Schadstoffwirkung zeitlich und räumlich sowie hinsichtlich des zugrundeliegenden Mechanismus:
 - wann tritt welcher Effekt auf?
 - > wie wirkt die Substanz?
 - > welche Funktionen und Strukturen sind betroffen?
 - welche Dosierungen/Konzentrationen sind wirksam?

"Was macht die Substanz mit dem Organismus?"

• Wie können die durch eine fast unüberschaubare Zahl potentieller Schadstoffe verursachten Vergiftungen charakterisiert werden?

- Nach der Zeitspanne zwischen Schadstoffexposition und Effektmanifestation (Latenz) wird unterschieden:
 - kurze (Sekunden bis wenige Tage): akute Wirkung. Beispiel: Lungenödeme durch Toluol oder Cd-Staub.
 - ▶ lange (Wochen bis Jahre): chronische Wirkung. Beispiel: Lungenfibrosen & -krebs durch Asbest.

Es gibt Substanz, die akut <u>und</u> chronisch wirken, z.B. die Bispyridium-Verbindungen Paraquat und Diquat:

$$H_3C-N^{-}$$
 N^+
 CH_3
 N^+
 N^+

 "akut" und "chronisch" werden auch zur Charakterisierung des Expositionszeitraums verwendet.

 Nach dem Umfang der Schädigung des Organismus werden unterschieden:

lokale Wirkung: nur direkt exponierte Körperteile werden

geschädigt.

Beispiel: Säure-Verätzungen auf der Haut oder im Mundraum.

systemische Wirkung: die Substanz wird resorbiert, im Körper verteilt und kann so den gesamten Organismus schädigen.

Beispiel: Panzytopenie durch Benzol.

- Nach Mechanismus und Dauer der Schädigung des Organismus werden unterschieden:
 - ➤ reversible Wirkung: Organismus kehrt mit Elimination der Noxe (= schädigendes Agens) in Normalzustand zurück.

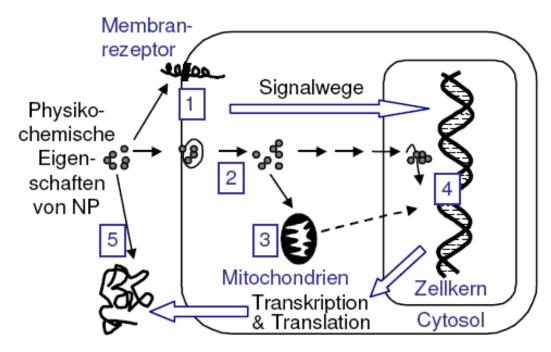
Beispiel: Kohlenmonoxid-Intoxikation.

.

Wirkungsdauer

(aus: Oehlmann & Markert, 1997)

irreversible Wirkung:


Schädigung besteht nach vollständiger Elimination der Noxe fort. Beispiel: alle Kanzerogene.

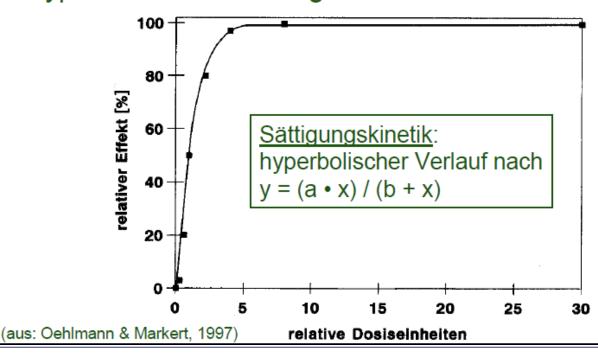
- Schadstoffe können über folgende biochemische oder biophysikalische Vorgänge Organismen schädigen:
 - 1. Reaktion mit definierten Rezeptoren
 - 2. Modulation der Enzymaktivität
 - 3. Interferenz mit spezifische Transportvorgängen
 - 4. Einlagerung in Membranen und Änderung ihrer Eigenschaften
 - Kovalente Bindung an essentielle Substanzen des Zellstoffwechsels
 - 6. Direkte und indirekte Interaktionen mit der DNA

Interaktionen Nanopartikel - Zelle

- Interaktion mit der Zellmembran
 Aufnahme/ Translokation von NP
 Interaktion mit Mitochondrien
 Interaktion mit dem Zellkern
 Interaktion mit Proteinen

- Aus dem Alltagswissen ist bekannt, dass eine positive Beziehung zwischen der aufgenommen Menge eines Wirkstoffs und dem biologischen Effekt besteht.
- Ab einer bestimmten Substanzmenge führen weitere Dosis-/ Konzentrationserhöhung nicht mehr zur Effektsteigerung: Absättigung des Systems, z.B. weil alle Rezeptoren bereits besetzt sind.

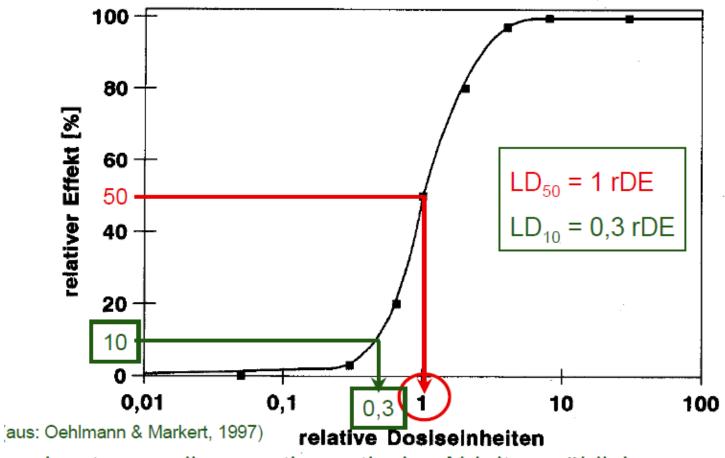
typische Dosis- / Konzentrations-Wirkungs-Beziehung


- Dosis: aufgenommene Substanzmasse pro kg Körpergewicht (z.B. mg/kg KG).
- Konzentration: pro Volumeneinheit gelöste Substanzmasse (z.B. mg/L)

- Effekte treten auf:
 - > nach dem Alles-oder-nichts-Gesetz (z.B. Tod): Inzidenz

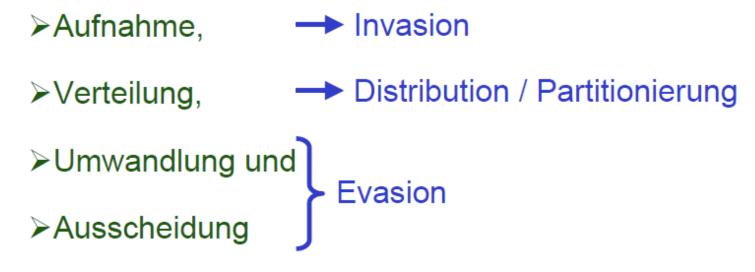
im Schadensfall

- ➤ als graduelle Antwort (z.B. Enzymhemmung): Effektstärke.
- Typische Dosis-Wirkungs-Kurve:



- Grafische Darstellungen von Dosis-Wirkungs-Beziehungen erleichtern die Ableitung toxikologischer Kenngrößen:
 - ▶ LD₅₀: <u>l</u>etale <u>D</u>osis für <u>50</u>% der geprüften Individuen.
 - ➤ ED₅₀: <u>D</u>osis, die <u>50</u>% des Maximaleffekts beim Individuum oder den <u>E</u>ffekt bei 50% der Individuen hervorruft.
- Als zusätzliche Kenngrößen werden heute häufig LD_x- bzw. ED_x-Werte angegeben (z.B. LD₁₀):

Steigung der Dosis-Wirkungs-Beziehung.



heute vor allem mathematische Ableitung üblich.

IV. Toxikokinetik

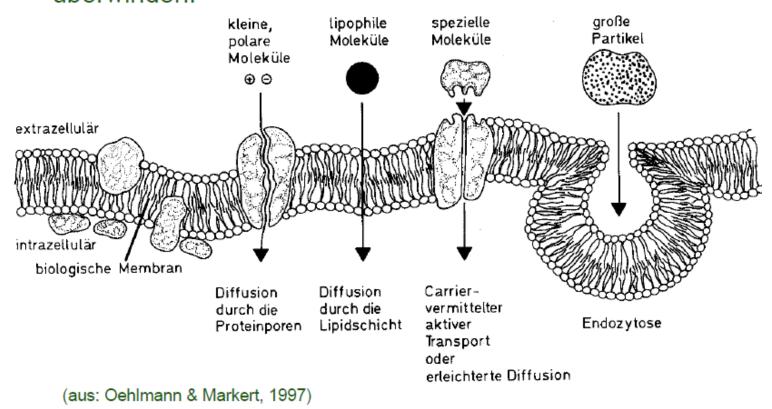
 Toxikokinetik charakterisiert die Geschwindigkeit und den Massenfluss der

toxischer Substanzen. Vereinfacht:

"Was macht der Organismus mit der Substanz?"

parenteral

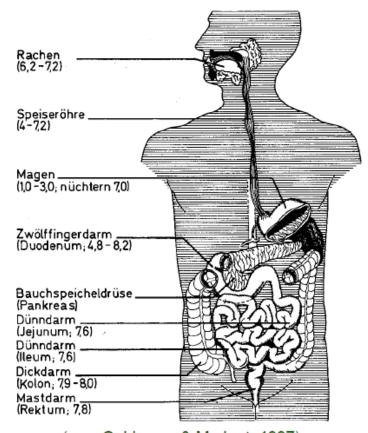
IV. Toxikokinetik


- Verbindungen müssen, bevor sie toxisch wirken können, vom Organismus aufgenommen (= resorbiert) werden. Dies kann über folgende Pfade erfolgen:
 - enteral (d.h. über den Verdauungstrakt) nach oraler Aufnahme,
 - pulmonal (d.h. über die Lunge) nach inhalativer -Aufnahme,
 - perkutan (d.h. über die Haut).
- Nur in der klinischen und experimentellen Toxikologie sind zwei Injektionsformen von Bedeutung:
 - intravenös (oder allgemein intravasal),
 - ➤ intraperitoneal (d.h. in das Coelom bei Nagetieren).

D U I S B U R G E S S E N

IV. Toxikokinetik

 Resorption beginnt mit der Aufnahme der Substanz durch Körperzellen, d.h. es sind zunächst Membranbarrieren zu überwinden:



D U I S B U R G E S S E N

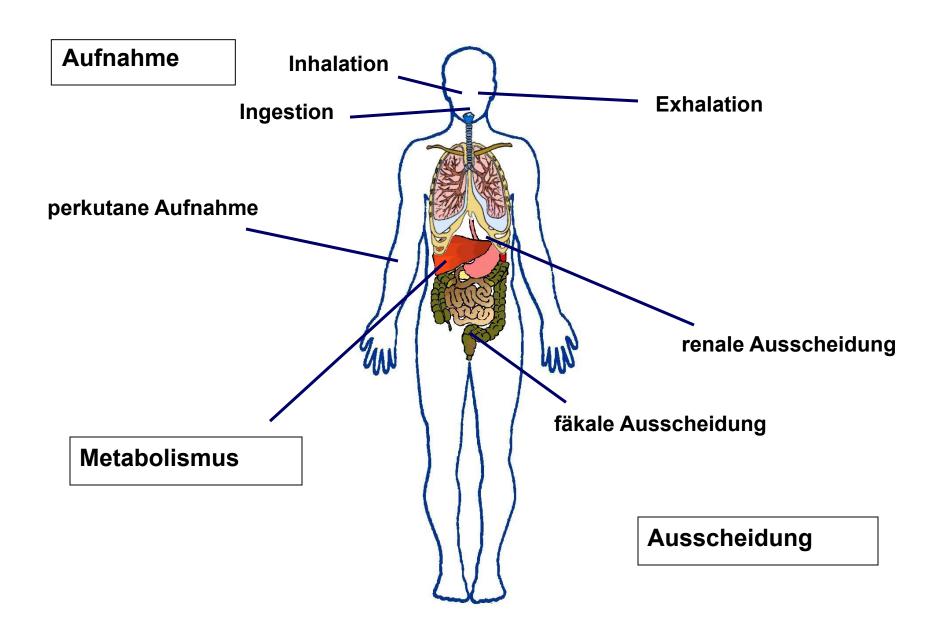
IV. Toxikokinetik

- Für die enterale Resorption entscheidende Faktoren:
 - Resorptionsfläche (z.B. Magen 0,2 m², Dünndarm 200 m²)
 - Verweildauer des Nahrungsbreis
 - Milieubedingungen, v.a. pH-Wert
- Weitere Faktoren:
 - Giftung durch Darmmikroben
 - Nutzung spezifischer Transportsysteme

(aus: Oehlmann & Markert, 1997)

IV. Toxikokinetik

Bronchiolus Ast der Lungenarterie Erythrozyt Blutkapillare Endothelzelle -Kern einer Alveolarraum Alveolarepithelzelle Kapillarnetz. Diffusion von 02 und CO_2 Alveolarraum der Lungenvene Gang des Lungenbläschens


V. Umwelttoxikologie

Umweltnoxen


- Metalle/Metalloide
 Arsen
- Luftschadstoffe
- Schadstoffe im Wasserkreislauf

Expositionsquelle	Chemikalie	Ort/Land	Fallzahlen
kontaminierter Reis (Itai-Itai)	Cadmium	Japan 1955	200 Betroffene
kontaminierte Saatkörner	Hexachlorbenzol	Türkei 1955	3.000 Betroffene
kontaminierte Meeresfrüchte (Minamata)	Methylquecksilber	Bucht von Minamata 1956	2.250 Betroffene, 47 Todesfälle
kontaminierter Reis (Yusho)	Polychlorierte Biphenyle (PCB)	Japan, China 1968	12.000-18.000 akute Intoxikationen
industrielle Emission	TCDD	Seveso (Italien)	ca. 200 Fälle von Chlorakne, 200.000 Untersuchte
kontaminiertes Olivenöl (Toxic-Oil- Syndrome)	Aromatische Amine?	Spanien 1981	20.000 Betroffene, 340 Todesfälle
Explosion eines Reaktionstanks	Methylisocyanat	Bhopal (Indien) 1984	2.000-10.000 Tote, mehrere Hundert- tausend Verletzte
arsenhaltiges Trinkwasser	Arsen	Bangladesh (nach 1971), Indien, Taiwan, Chile	ca. 50.000.000 Betroffene

Exposition gegenüber Noxen

Einwirkung von Noxen

Arsenvorkommen

Groundwater arsenic contamination areas.

Effekte nach Arsenexposition

Health effects of exposed people

Table 1: Effects of acute and chronic human exposures to Arsenic

Acute	Chronic	
Burning and dryness of mouth and throat	Skin lesions	
Gastrointenstinal discomfort	Neurological effects	
Vomiting, Diarhoea	Hypertension	
Bloody Urine,	Cardiovascular and respiradory diseases	
Shock, Convulsions	Diabetes	
Coma, Death	Cancer 4	

UNIVERSITÄT DUISBURG ESSEN

Effekte nach Arsenexposition

Hautveränderungen

Plattenepithelkarzinom

WHO -Grenzwert: 10 µg/l

Hyperkeratose

Lungenkrebs Harnblasenkrebs Hautkrebs

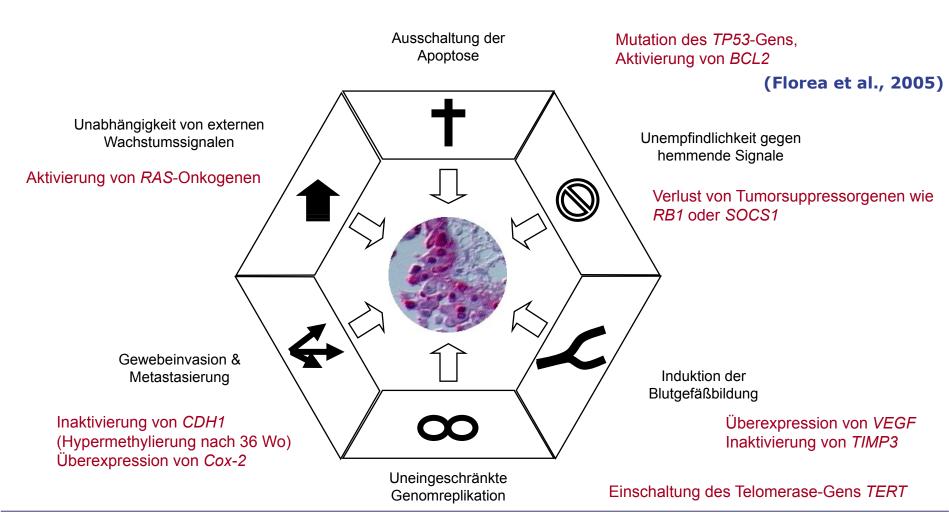
Nicht-maligne Erkrankungen u.a. Black-Foot-Disease

(Chowdhury et al., 2000)

Biotransformation von Arsenverbindungen

1.) nach Challenger, Chem. Rev. (1945) 36: 315

R = reduction, OM = oxidative methylation

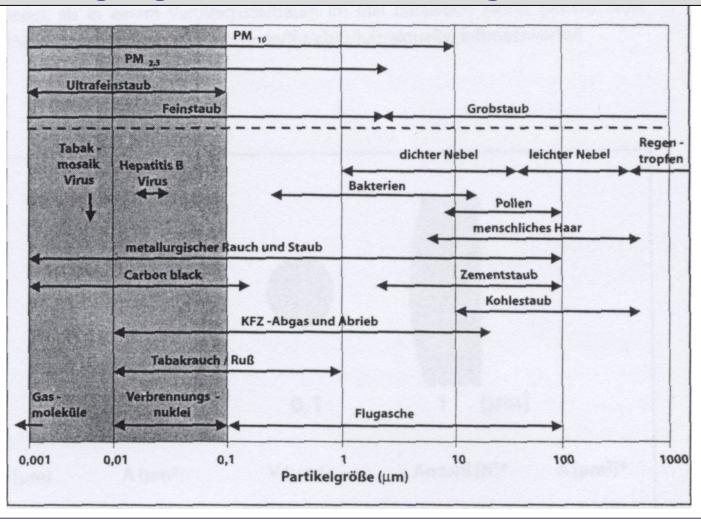

Alternative pathway for Arsenic biotransformation

2.) nach Hayakawa et al., Arch. Toxicol. (2005) 79: 183

-fünfwertige methylierte Verbindungen als Endprodukte

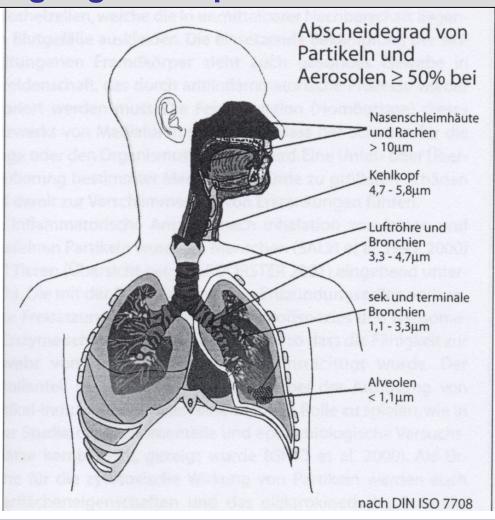
Forschungsansätze

Einwirkung von Noxen


Luftverunreinigungen

Definition:

Luftverunreinigungen sind Veränderungen der natürlichen Zusammensetzung der Luft, insbes. durch Rauch, Ruß, Staub, Gase, Aerosole, Dämpfe und Geruchsstoffe. Sie können für Menschen, Tiere und Pflanzen schädlich sein.



Luftverunreinigungen - Größenverteilungen

Luftverunreinigungen - Depositionsverhalten

Gesundheitsrisiken nach Feinstaubexposition

Epidemiologie: Zunahme der Gesamtmortalität, der kardiopulmonalen Mortalität und der Krebsmortalität bei zunehmender Belastung der Außenluft mit Feinstaubpartikeln

Auswirkungen der Staubexposition

- auf das respiratorische System

Verschlechterung der Lungenfunktion Entzündungen (Bronchitis etc.) COPD Asthma bronchiale

Bronchialkarzinome

-auf das kardiovaskuläre System

Herzfrequenzanstieg
eingeschränkte Herzfrequenzvariabilität
arterielle Vasokonstriktion
Anstieg der Fibrinogenkonzentration
Anstieg des arteriellen Blutdruckes
erhöhte Plasmaviskosität
Zunahme des C-reaktiven Proteins

Smog = Smoke + Fog

Smogwetterlagen

- in kurzer Zeit Anstieg der Luftverunreinigung bis zur 10fachen Konzentration
- kein vertikaler Abtransport der Luftfremdstoffe (Inversionswetterlage)

2 Arten von Smog:

- 1. London- oder Wintersmog
- 2. Los Angeles- oder Sommersmog
- (1) durch Anreicherung von Luftverunreinigungen aus Verbrennungsprozessen
- (2) durch photochemische Reaktionen

Smog vom London-Typ

Historische Episode in London im Dezember 1952

Ursache: Heizung mit Kohleöfen bei Inversionswetter-

lage ("Londoner Nebel")

⇒ Anreicherung von SO₂, NOҳ und CO

• Folgen: erhöhte Mortalität und Morbidität von Kindern,

Lungenvorgeschädigten und alten Menschen

Atem- und Kreislaufbeschwerden vor allem bei

Risikogruppen

Smog vom Los Angeles-Typ

Los Angeles-Smog

- im Sommer Konzentrationszunahme des bodennahen Ozons
 - ⇒ Anreicherung von organischen Oxidationsprodukten
 - Reizung der Schleimhäute und des oberen Respirationstraktes, Augenreizungen, Kopfschmerzen

Spurenstoffe im Wasser

UNIVERSITÄT D U I S B U R G E S S E N

Vielen Dank für Ihre Aufmerksamkeit!

UNIVERSITÄT DUISBURG ESSEN

ZENTRUM FÜR WASSER- UND UMWELTFORSCHUNG

www.cenide.de